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1. Implementations
1.1. Mapping Network

The mapping networks in FENeRF are to map the shape
and texture latent codes zs, zt into the geometry and texture
latent spaces, respectively. The output of each mapping net-
work are frequencies γ and phase shifts β for conditioning
specific layers of neural radiance fields. We utilize two in-
dependent mapping networks: fgeo and fapp with the sim-
ilar architectures. Each mapping network is parameterized
as an MLP with 4 hidden layers of 256 units followed by
LeakyReLU activations [6] each and a linear layer for out-
put γ, β, as shown in Tab. 1. The output dimension of map-
ping network is 2× 256× n layer, where n layer is 8 and 3
for fgeo and fapp, respectively.

Layer Type Activation Output Dimension
Linear LeakyReLU (0.2) 256
Linear LeakyReLU (0.2) 256
Linear LeakyReLU (0.2) 256
Linear LeakyReLU (0.2) 256
Linear – 2 × 256 × n layers

Table 1. Mapping network architecture

1.2. Joint Semantic Radiance Fields

Our joint semantic radiance fields are parameterized as
MLPs which map a 3D point x ∈ R3 and view direction
d ∈ R2 together with shape and texture codes zs, zt ∈
N (0, I) and learnable coordinate embedding ecoord into
volume density σ ∈ R+, emitted color c ∈ R3 and semantic
labels s ∈ Rk, where k is set to 19 as the number of seman-
tic classes. As shown in Fig. 1, we use 8 FiLMed-SIREN
layers with a hidden dimension of 256 as did in [1] to get
the intermediate feature f conditioning on zs. Then f is fed
into a single fully connected layer for the volume density
σ. Meanwhile, f is fed into 3 FiLMed-SIREN layers to-
gether with d, ecoord to the color c conditioning on zt, and
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Figure 1. The FENeRF generator architecture

into three fully connected layers for the semantic labels s.
Therefore, we ensure that the facial geometry and semantic
labels only depend on the input point x and the shape latent
code zs. Further, the facial texture is conditioned on the tex-
ture latent code, coordinate embedding and view-dependent
features.

1.3. Discriminators

There are two discriminators in FENeRF: Dc, Ds, whose
architectures are the same as that in π-GAN [1] except that
the input feature of Ds are the concatenation of image and
semantic map instead of single image in Dc.

1.4. Image Background

As mentioned in out main paper, we train FENeRF on the
images without background masking and evaluate all met-
rics on the images with randomly generated backgrounds
for fair comparison. Only for visualization, in order to high-
light the facial region, we replace the messy BG with pure
white/black/grey. Since the black BG mask encourages the
densities out of facial region to be as small as possible in
training, we replace the BG by setting a density threshold
in volume rendering or replacing the generated pixels (with
BG mask) with another color.
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1.5. Training Details

We begin training FENeRF at a low ersolution of 32 ×
32 with a initial batch size of 40. Then the resolution is dou-
bled up to 128×128 with a batch size of 24 which is aggre-
gated across 4 6-batch together. For both CelebAHQ and
FFHQ, we first use 24 samples per ray at 32 × 32 resolu-
tion, and then increase to 48 samples per ray at 64 × 64 and
128 × 128 resolution. We sample camera poses from a nor-
mal distribution in both datasets. For CelebA, the vertical
standard deviation and the horizontal standard deviation are
0.3 and 0.15 radians, respectively. In turns to FFHQ, these
two hyper-parameters are increased to 0.4 and 0.2, respec-
tively. We train models used for the image synthesis quality
evaluation for 200k iterations on 8 Tesla V100 GPUs. The
training process takes about 2 days.

2. GAN Inversion Details

Following the common practice, we try two different ini-
tialization ways for GAN inversion, as shown in Fig. 2. The
first approach is to randomly sample several (e.g. 10k) la-
tent codes and map them into frequencies and phase shifts,
whose averages are taken as initialization. This method
works well except the case that the initialized shape or tex-
ture is starkly different from the reference one.

We further adopt a hybrid inversion approach where
we first train two encoders which map real images into
the frequencies and phase shifts of shape and texture la-
tent spaces independently: Es : (I,T) −→ (γs, βs) and
Et : (I,T) −→ (γt, βt). Here I and T are input real im-
ages and camera poses. We select real images I from the
CelebAHQ [3]. For camera poses, recall that we append
two channels in our discriminators to predict the sampled
camera pose which is trained with L1 loss. Therefore, we
use our pretrained discriminator to predict the input camera
pose T. Following [5], each encoder adopts a feature pyra-
mid network [4] as backbone to extract multi-level features
from a input image. Then the features are projected to fre-
quencies and phase shifts through fully convolutional lay-
ers. During training Et and Es, parameters of the FENeRF
generator are fixed. During inversion, we feed the reference
image into two encoders and use the mapped frequencies
and phase shifts as initialization. We find that the second
method gains better image quality due to closer initializa-
tion to the distribution of the latent spaces.

Followed by initialization, we optimize shape and tex-
ture latent codes jointly given the reference image. We
adopt the Perceptual Loss [2] with the weight of 1 and Mean
Squared Error Loss with the weight of 0.5.

Figure 2. Two GAN Inversion approaches of FENeRF. (a): We
randomly sample zs, zt in two latent spaces and project them into
γ, β in Ws,Wt. Then the average of γ, β are taken as initial-
ization; (b): we directly project the real image into W space for
initialization through encoders.

3. Additional Experimental Results
3.1. Ablation Studies

Effects of learnable coordinate embedding. As men-
tioned in our paper, the introduced learnable coordinate em-
bedding ecoord facilitates the fine-grained image details. In
practice, we find that ecoord also improves the disentangle-
ment of shape and texture, as shown in Fig. 3. In the pure
SIREN-based frameworks, the color branch tends to ignore
texture code zt since the texture is coupled with shape in
the intermediate feature f and the color branch is less likely
to response to texture code zt while overfits to the input f
towards faster training converge. By contrast, the injected
learnable embeddings ecoord increases the hardness of the
network overfitting to f thus enforces the color branch to
condition on the injected texture code zt. Moreover, we
also find that shrinking the number of feature channels of
f and increasing the hidden layers of the color branch also
benefit to the disentanglement of shape and texture.

4. Additional Visual Results
We show additional visual results of the qualitative com-

parison with other baseline models and fancy applications
of our method. Fig. 4 shows the comparison of geometry
interpretation with π-GAN to prove that our FENeRF learns
more accurate generative facial geometry and the back-
ground segmentation without supervision. Fig. 5 shows the
inversion ability of our semantic rendering. Fig. 6 shows
more results of our disentangled control of shape and tex-
ture. We provide more visual examples of facial local edit-
ing in Fig. 7, proving that FENeRF enables fine-grained fa-
cial editing in a free-viewed manner. Please refer to our
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Figure 3. Effect of learnable feature embedding ecoord on the dis-
entanglement of shape and texture. The first two rows show the
disentanglement of shape and texture w/o ecoord and the bottom
two rows show that w/ ecoord. Pure SIREN-based framework cou-
ples both shape and texture styles in zs while zt has no effect on
the facial texture. Instead, the injection of our learnable feature
embedding improves the disentanglement of shape and texture sig-
nificantly.

supplemental demo video for more dynamic visual results.
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Figure 4. Visual comparison of geometry interpretation with π-GAN.
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Figure 5. Free-viewed semantic inversion of real images. Given a real portrait image, FENeRF is capable of projecting it into the shape
latent space with its reconstructed semantic field. The semantic field can be rendered into free-viewed semantic maps with view consistency.

Figure 6. Results of disentangled control of shape and texture.

5



Figure 7. Results of local facial editing. FENeRF achieves fine-grained local facial editing, showing that the latent spaces are region
disentangled.
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